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In this work, we proposed a versatile signal processing and analysis framework for Electroencephalogram
(EEG). Within this framework the signals were decomposed into the frequency sub-bands using DWT and
a set of statistical features was extracted from the sub-bands to represent the distribution of wavelet
coefficients. Principal components analysis (PCA), independent components analysis (ICA) and linear dis-
criminant analysis (LDA) is used to reduce the dimension of data. Then these features were used as an
input to a support vector machine (SVM) with two discrete outputs: epileptic seizure or not. The perfor-
mance of classification process due to different methods is presented and compared to show the excellent
of classification process. These findings are presented as an example of a method for training, and testing
a seizure prediction method on data from individual petit mal epileptic patients. Given the heterogeneity
of epilepsy, it is likely that methods of this type will be required to configure intelligent devices for treat-

ing epilepsy to each individual’s neurophysiology prior to clinical operation.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Electroencephalograms (EEGs) are recordings of the electrical
potentials produced by the brain. Analysis of EEG activity has
been achieved principally in clinical settings to identify pathol-
ogies and epilepsies since Hans Berger’s recording of rhythmic
electrical activity from the human scalp. In the past, interpreta-
tion of the EEG was limited to visual inspection by a neuro-
physiologist, an individual trained to qualitatively make a
distinction between normal EEG activity and abnormalities con-
tained within EEG records. The advance in computers and the
technologies related to them has made it potential to success-
fully apply a host of methods to quantify EEG changes (Bronz-
ino, 2000).

Compared with other biomedical signals, the EEG is extremely
difficult for an untrained observer to understand, partially as a con-
sequence of the spatial mapping of functions onto different regions
of the brain and electrode placement. Besides, data processing can
be determination of reduced features set including only data
needed for quantification, as in evoked response recordings, or fea-
ture extraction and subsequent pattern recognition, as in auto-
mated spike detection during monitoring for epileptic seizure
activity. In early attempts to show a relationship between the
EEG and behavior, analog frequency analyzers were used to exam-
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ine the EEG data. This approach is based on earlier interpretation
that the EEG spectrum contains some characteristic waveforms that
fall primarily within four frequency bands - 6 (<4 Hz), 0 (4-8 Hz), «
(8-13 Hz), and B (13-30 Hz). Even though unsatisfactory, these ini-
tial efforts did bring in the use of frequency analysis to the study of
brain wave activity. Although power spectral analysis provides a
quantitative measure of the frequency distribution of the EEG at
the expense of other details in the EEG such as the amplitude distri-
bution and information relating to the presence of particular EEG
patterns. Hence time-frequency signal-processing algorithms such
as discrete wavelet transform (DWT) analysis are necessary to ad-
dress different behavior of the EEG in order to describe it in the time
and frequency domain. It should also be emphasized that the DWT
is suitable for analysis of non-stationary signals, and this represents
a major advantage over spectral analysis. Hence the DWT is well
suited to locating transient events. Such transient events as spikes
can occur during epileptic seizures (Adeli, Zhou, & Dadmehr,
2003; Bronzino, 2000; D’Alessandro et al., 2003; Subasi, 2007).

An exciting application of seizure prediction technology is its
potential for use in therapeutic epilepsy devices to trigger inter-
vention to prevent seizures before they begin. Seizure prediction
has been investigated by type to include prediction by studying
preictal features, prediction by fast detection, prediction by clas-
sification, and prediction by probability estimation. Studies in
seizure prediction vary widely in their theoretical approaches
to the problem, validation of results, and the amount of data
analyzed. Some relative weaknesses in this literature are the lack
of extensive testing on baseline data free from seizures, the lack
of technically rigorous validation and quantification of algorithm
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performance in many studies (Adeli et al., 2003; D’Alessandro
et al,, 2003; Subasi, 2006, 2007).

Principal component analysis (PCA), independent component
analysis (ICA) and linear discriminant analysis (LDA) are well-
known methods for feature extraction (Cao, Chua, Chong, Lee, &
Gu, 2003; Wang & Paliwal, 2003; Widodo & Yang, 2007). Feature
extraction means transforming the existing features into a lower-
dimensional space which is useful for feature reduction to avoid
the redundancy due to high-dimensional data. In this work, DWT
has been applied for the time-frequency analysis of EEG signals
for the classification using wavelet coefficients. EEG signals were
decomposed into frequency sub-bands using DWT. Then a set of
statistical features was extracted from these sub-bands to repre-
sent the distribution of wavelet coefficients. PCA, ICA and LDA
are used to reduce the dimension of data. Then these features were
used as an input to a support vector machine (SVM) with two dis-
crete outputs: epileptic or non-epileptic seizure. The accuracy of
the various classifiers will be assessed and cross-compared, and
advantages and limitations of each technique will be discussed.
The simulation shows that SVM by feature extraction using PCA,
ICA or LDA can always perform better than that without feature
extraction. Furthermore, among the three methods, the best per-
formance is achieved in LDA feature extraction.

2. Materials and methods
2.1. Subjects and data recording

We used the publicly available data described in Andrzejak
et al. (2001). The complete data set' consists of five sets (denoted
A-E) each containing 100 single-channel EEG segments. Sets A and
B consisted of segments taken from surface EEG recordings that were
carried out on five healthy volunteers using a standardized electrode
placement scheme. Volunteers were relaxed in an awake state with
eyes open (A) and eyes closed (B), respectively. Sets C, D, and E orig-
inated from EEG archive of presurgical diagnosis. EEGs from five
patients were selected, all of whom had achieved complete seizure
control after resection of one of the hippocampal formations, which
was therefore correctly diagnosed to be the epileptogenic zone. Seg-
ments in set D were recorded from within the epileptogenic zone,
and those in set C from the hippocampal formation of the opposite
hemisphere of the brain. While sets C and D contained only activity
measured during seizure free intervals, set E only contained seizure
activity. All EEG signals were recorded with the same 128-channel
amplifier system, using an average common reference. The data
were digitized at 173.61 samples per second using 12 bit resolution.
Band-pass filter settings were 0.53-40 Hz (12 dB/oct). In this study,
we used two dataset (A and E) of the complete dataset as in Subasi
(2007). Typical EEGs are given in Fig. 1.

2.2. Analysis using discrete wavelet transform

A signal is said to be stationary if it does not change much over
time. Fourier transform can be applied to the stationary signals.
However, like EEG, plenty of signals may contain non-stationary
or transitory characteristics. Thus it is not ideal to directly apply
Fourier transform to such signals. In such a situation time-fre-
quency methods such as wavelet transform must be used. In wave-
let analysis, a variety of different probing functions may be used.
This concept leads to the defining equation for the continuous
wavelet transform (CWT):

1 EEG time series are available under (http://www.meb.unibonn.de/epileptologie/
science/physik/eegdata.html).

W(a,b) = Z:x(t)%d;(%)dt (1)

where b acts to translate the function across x(t), and the variable a
acts to vary the time scale of the probing function, . If a is greater
than one, the wavelet function, , is stretched along the time axis,
and if it is less than one (but still positive) it contacts the function.
While the probing function v could be any of a number of different
functions, it always takes on an oscillatory form, hence the term
“wavelet.” The * indicates the operation of complex conjugation,

and the normalizing factor ﬁ ensures that the energy is the same

for all values of a. In applications that require bilateral transforma-
tions, it would be preferred a transform that produces the minimum
number of coefficients required to recover accurately the original
signal. The discrete wavelet transform (DWT) achieves this parsi-
mony by restricting the variation in translation and scale, usually
to powers of 2. For most signal and image processing applications,
DWT-based analysis is best described in terms of filter banks. The
use of a group of filters to divide up a signal into various spectral
components is termed sub-band coding. This procedure is known
as multi-resolution decomposition of a signal x[n]. Each stage of this
scheme consists of two digital filters and two down-samplers by 2.
The first filter, h[-] is the discrete mother wavelet, high-pass in nat-
ure, and the second, g[-] is its mirror version, low-pass in nature.
The down-sampled outputs of first high-pass and low-pass filters
provide the detail, D1 and the approximation, Al, respectively
(Adeli et al., 2003; Marchant, 2003; Semmlow, 2004).

Selection of appropriate wavelet and the number of levels of
decomposition is very important in analysis of signals using
DWT. The number of levels of decomposition is chosen based
on the dominant frequency components of the signal. The levels
are chosen such that those parts of the signal that correlate well
with the frequencies required for classification of the signal are
retained in the wavelet coefficients. Since the EEG signals do
not have any useful frequency components above 30 Hz, the
number of levels was chosen to be 5. Thus the signal is decom-
posed into the details D1-D5 and one final approximation, A5.
The ranges of various frequency bands are shown in Table 1. Figs.
2 and 3 show five different levels of approximation and details of
an EEG signal taken from an unhealthy and healthy subject,
respectively. These approximation and detail records are recon-
structed from the Daubechies 4 (DB4) wavelet filter (Adeli
et al., 2003).

The extracted wavelet coefficients provide a compact represen-
tation that shows the energy distribution of the EEG signal in time
and frequency. Table 1 presents frequencies corresponding to dif-
ferent levels of decomposition for Daubechies order 4 wavelet with
a sampling frequency of 173.6 Hz. In order to further decrease the
dimensionality of the extracted feature vectors, statistics over the
set of the wavelet coefficients was used (Kandaswamy, Kumar,
Ramanathan, Jayaraman, & Malmurugan, 2004). The following sta-
tistical features were used to represent the time-frequency distri-
bution of the EEG signals:

(1) Mean of the absolute values of the coefficients in each sub-
band.

(2) Average power of the wavelet coefficients in each sub-band.

(3) Standard deviation of the coefficients in each sub-band.

(4) Ratio of the absolute mean values of adjacent sub-bands.

Features 1 and 2 represent the frequency distribution of the sig-
nal and the features 3 and 4 the amount of changes in frequency
distribution. These feature vectors, calculated for the frequency
bands A5 and D3-D5, were used for classification of the EEG sig-
nals (Kandaswamy et al., 2004).
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Fig. 1. Examples of five different sets of EEG signals taken from different subjects.
Table 1 governing the “signal.” The other dimensions are noise. Form a

Frequencies corresponding to differ-
ent levels of decomposition for
Daubechies 4 filter wavelet with a
sampling frequency of 173.6 Hz.

k x k matrix A whose columns consist of the k eigenvectors. Pre-
process data according to:

X =A'X - @)
Decomposed Frequency
signal range (Hz) It can be shown that this representation minimizes a squared error
D; 43.4-86.8 criterion. Details are given in Cao et al. (2003), Duda, Hart, and Strok
D, 21.7-43.4 (2001).
Ds 10.8-21.7
D4 5.4-10.8
Ds 2.7-5.4 2.3.2. Independent component analysis (ICA)
As 0-2.7 ICA is a feature extraction method that transform multivariate

2.3. Feature extraction methods

2.3.1. Principal component analysis (PCA)

Principal component analysis (PCA) is a well-established meth-
od for feature extraction and dimensionality reduction. In PCA, we
seek to represent the d-dimensional data in a lower-dimensional
space. This will reduce the degrees of freedom; reduce the space
and time complexities. The objective is to represent data in a space
that best expresses the variation in a sum-squared error sense. This
technique is mostly useful for segmenting signals from multiple
sources. It facilitates significantly if we know how many indepen-
dent components exist ahead of time, as with standard clustering
methods. The basic approach in principal components is theoreti-
cally rather simple. First, the d-dimensional mean vector y and
d x d covariance matrix X are computed for the full data set. Next,
the eigenvectors and eigenvalues are computed, and sorted accord-
ing to decreasing eigenvalue. Call these eigenvectors e; with eigen-
value 2, e; with eigenvalue 2, and so on. Sub-sequently, the
largest k such eigenvectors are chosen. In practice, this is done
by looking at a spectrum of eigenvectors. Often there will be
dimension implying an inherent dimensionality of the subspace

random signal into a signal having components that are mutually
independent. Independent components can be extracted from the
mixed signals by using this method. In this manner, independence
denotes the information carried by one component cannot be in-
ferred from the others. Statistically this means that joint probabil-
ity of independent quantities is obtained as the product of the
probability of each of them. Suppose there are c independent scalar
source signals x;(t) for i=1, ..., c where we can consider t to be a
time index 1 <t < T. For notational convenience we group the ¢
values at an instant into a vector x(t) and assume, further, that
the vector has zero mean. Because of our independence assump-
tion, and an assumption of no noise, we the multivariate density
function can be written as

p(x(t) = [ p(xi(0)) 3)
i=1

Suppose that a d-dimensional data vector is observed at each
moment,

y(t) = Ax(f) (4)

where A is a ¢ x d scalar matrix, and below we shall require d > c.
The task of independent component analysis is to recover the
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Fig. 2. Approximate and detailed coefficients of EEG signal taken from unhealthy subject (epileptic patient).

source signals from the sensed signals. More specifically, we seek a
real matrix W such that

z(t) = Wy(t) = WAX(t) ()

where z is an estimate of the sources x(t). Of course we seek
W=A"", but neither A nor its inverse are known.

We approach the determination of A by maximum-likelihood
techniques. We use an estimate of the density, parameterized by
a p(y; a) and seek the parameter vector a that minimizes the differ-
ence between the source distribution and the estimate. That is, a is
the basis vectors of A and thus p(y;a) is an estimate of the p(y). De-
tails are given in Cao et al. (2003), Duda et al. (2001), and Widodo
and Yang (2007).

2.3.3. Linear discriminant analysis (LDA)

The aim of LDA is to create a new variable that is a combination
of the original predictors. This is accomplished by maximizing the
differences between the predefined groups, with respect to the
new variable. The goal is to combine the predictor scores in such
a way that, a single new composite variable, the discriminant
score, is formed. This can be viewed as an excessive data dimen-
sion reduction technique that compresses the p-dimensional pre-
dictors into a one-dimensional line. At the end of the process it is

hoped that each class will have a normal distribution of discrimi-
nant scores but with the largest possible difference in mean scores
for the classes. In reality, the degree of overlap between the dis-
criminant score distributions can be used as a measure of the suc-
cess of the technique. Discriminant scores are calculated by a
discriminant function which has the form:

D =wiZ{ +WyZy +W3Z3 + ---JerZp (6)

As a result a discriminant score is a weighted linear combination of
the predictors. The weights are estimated to maximize the differ-
ences between class mean discriminant scores. Generally, those
predictors which have large dissimilarities between class means
will have larger weights, at the same time weights will be small
when class means are similar (Fielding, 2007).

2.4. Support vector machines (SVMs)

Support vector machines (SVMs) are build on developments in
computational learning theory. Because of their accuracy and abil-
ity to deal with a large number of predictors, they have more atten-
tion in biomedical applications. The majority of the previous
classifiers separate classes using hyperplanes that split the classes,
using a flat plane, within the predictor space. SVMs broaden the
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Fig. 3. Approximate and detailed coefficients of EEG signal taken from a healthy subject.

concept of hyperplane separation to data that cannot be separated
linearly, by mapping the predictors onto a new, higher-dimensional
space in which they can be separated linearly.

The method’s name derives from the support vectors, which are
lists of the predictor values taken from cases that lie closest to the
decision boundary separating the classes. It is practical to assume
that these cases have the greatest impact on the location of the
decision boundary. In fact, if they were removed they could have
large effects on its location. Computationally, finding the best loca-
tion for the decision plane is an optimization problem that makes
uses of a kernel function to build linear boundaries through nonlin-
ear transformations, or mappings, of the predictors. The intelligent
component of the algorithm is that it locates a hyperplane in the
predictor space which is stated in terms of the input vectors and
dot products in the feature space. The dot product can then be used
to find the distances between the vectors in this higher-dimen-
sional space. A SVM locates the hyperplane that divides the sup-
port vectors without ever representing the space explicitly. As an
alternative a kernel function is used that plays the role of the dot
product in the feature space. The two classes can only be separated
absolutely by a complex curve in the original space of the predic-
tor. The best linear separator cannot totally separate the two clas-
ses. On the other hand, if the original predictor values can be

projected into a more suitable feature space, it is possible to sepa-
rate completely the classes with a linear decision boundary. As a
result, the problem becomes one of finding the suitable transfor-
mation. The kernel function, which is central to the SVM approach,
is also one of the main problems, especially with respect to the
selection of its parameter values. It is also crucial to select the mag-
nitude of the penalty for violating the soft margin between the
classes. This means that successful construction of a SVM necessi-
tates some decisions that should be informed by the data to be
classified (Abe, 2005; Burbidge, Trotter, Buxton, & Holden, 1998;
Burges, 1998; Duda et al., 2001; Fielding, 2007).

The basic support vector classifier is very similar to the percep-
tron. Both are linear classifiers, assuming separable data. In percep-
tron learning, the iterative procedure is stopped when all samples
in the training set are classified correctly. For linearly separable
data, this means that the found perceptron is one solution arbi-
trarily selected from an (in principle) infinite set of solutions. In
contrast, the support vector classifier chooses one particular solu-
tion: the classifier which separates the classes with maximal mar-
gin. The margin is defined as the width of the largest ‘tube’ not
containing samples that can be drawn around the decision bound-
ary (see Fig. 4). It can be proven that this particular solution has the
highest generalization ability.
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Fig. 4. The linear support vector classifier.

The support vector classifier has many advantages. A unique
global optimum for its parameters can be found using standard
optimization software. Nonlinear boundaries can be used without
much extra computational effort. Moreover, its performance is
very competitive with other methods. A drawback is that the prob-
lem complexity is not of the order of the dimension of the samples,
but of the order of the number of samples. For large sample sizes
Ns > 1000 general quadratic programming software will often fail
and special-purpose optimizers using problem-specific speedups
have to be used to solve the optimization. Details are given (Abe,
2005; Burbidge et al., 1998; Burges, 1998; Cortes & Vapnik,
1995; Duda et al., 2001; Fielding, 2007; Van der Heijden, Duin,
de Ridder, & Tax, 2004; Vapnik, 1995).

3. Results and discussion

In this study, we used EEG signals of normal and epileptic pa-
tients in order to perform a comparison between the PCA, ICA
and LDA by using SVM. EEG recordings were divided into sub-band
frequencies such as o, 8, 6 and 0 by using DWT. Then a set of statis-
tical features was extracted from the wavelet sub-band frequencies
6 (1-4 Hz), 0 (4-8 Hz), ® (8-13 Hz) and p (13-30 Hz). After normal-
ization, the EEG signals were decomposed using wavelet transform
and the statistical features were extracted from the sub-bands.
Then dimension of these features are reduced by using ICA, PCA
and LDA. A classification system based on SVM was implemented
using these data as inputs.

The objective of the modelling phase in this application was to
develop classifiers that are able to identify any input combination
as belonging to either one of the two classes: normal or epileptic.
For developing neural network classifiers, 800 examples were ran-
domly taken from the 1600 examples and used for training the
neural networks, and the remaining 800 examples were kept aside
and used for testing the developed models. The class distribution of
the samples in the training and test data set is summarized in
Table 2.

Additionally, because the problem involves classification into
two classes, sensitivity and specificity were used as a performance
measure. In order to analyze the output data obtained from the
application, sensitivity (true positive ratio) and specificity (true
negative ratio) are calculated by using confusion matrix. The sensi-
tivity value (true positive, same positive result as the diagnosis of
expert neurologists) was calculated by dividing the total of diagno-

Table 2

Class distribution of the samples in the training and test data sets.
Class Training set Test set Total
Epileptic 400 400 800
Normal 400 400 800
Total 800 800 1600

sis numbers to total diagnosis numbers that are stated by the ex-
pert neurologists. Sensitivity, also called the true positive ratio, is
calculated by the formula:

TP
TP+ FN

On the other hand, specificity value (true negative, same diag-
nosis as the expert neurologists) is calculated by dividing the total
of diagnosis numbers to total diagnosis numbers that are stated by
the expert neurologists. Specificity, also called the true negative
ratio, is calculated by the formula:

TN
TN + FP

Sensitivity = TPR = x 100% (7)

Specificity = TNR = x 100% (8)

3.1. Experimental results

Epileptic seizure detection in EEG can be thought as a sort of
pattern recognition concept. It consists of data acquisition, signal
processing, feature extraction, feature reduction and seizure detec-
tion. A novel EEG signal classification method is proposed, which is
based on DWT, the dimension reduction (based on ICA, PCA and
LDA) and SVM classification. The procedure of the proposed system
can be summarized as follows:

Step 1: The features calculated with statistical features param-
eter from time-frequency domain using DWT.

Step 2: We extract the features using ICA, PCA and LDA algo-
rithm to reduce the dimensionality. This step is performed to
remove the irrelevant features which are redundant and even
degrade the performance of the classifier.

Step 3: The classification process for epileptic seizure detection
is carried out using SVM-based classification.

The procedure was repeated on EEG recordings of all subjects
(healthy and epileptic patients). In this work, the radial basis func-
tion (RBF) kernel is used as the kernel function of SVMs. There are
two parameters related with this kernel: ¢ and ). The upper bound
o for penalty term and kernel parameter y plays a critical role in
performance of SVMs. Hence, inappropriate selection of parame-
ters ¢ and y, may cause over-fitting or under-fitting problem.
Therefore, we should find optimal ¢ and y so that the classifier
can accurately classify the data input. In this work, we use 10-fold
cross-validation to investigate the appropriate kernel parameter o,
and 7. Principally, all the pairs of (o, ) for RBF kernel are tried and
the one with the best cross-validation accuracy is selected. After
the selection of optimal kernel parameters g, and y, the whole
training data was trained once more to construct the final
classifier.

In this work, the training process carried out using RBF kernel to
PCA +SVM, ICA +SVM, and LDA +SVM. After training, we used
three different feature extraction methods and get the test results
which are shown in Table 3. By using PCA, ICA and LDA features are
extracted from original feature sets. In addition, the number of
support vectors (SVs) decreased due to feature extraction. As seen
in Table 3, the classification rate with LDA feature extraction is
highest (100%) and ICA came second (99.5%). The PCA had lowest
correct classification percentage (98.75%) compared to LDA and
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Table 3
The values of statistical parameters of the ICA, PCA and LDA models for EEG signal
classification.

Feature extraction method Accuracy Specificity Sensitivity
PCA (%) 98.75 98.5 99.00

ICA (%) 99.5 99 100

LDA (%) 100 100 100

ICA counterparts. Also the simulation shows that SVM by feature
extraction using PCA, ICA, or LDA can always perform better than
that without feature extraction (98%). The excellent of LDA is also
shown by the number of SVs which is reduced and smaller than
PCA and ICA. In these circumstances, classification process using
ICA feature extraction needs fewer numbers of SVs than PCA fea-
ture extraction. This fact can be explained that ICA finds the com-
ponents not only uncorrelated but independent. Independent
components are more valuable for classification rather than uncor-
related components. However, according to training time, the clas-
sification process using LDA feature extraction and SVMs is
relatively longer than PCA and ICA feature extraction. Furthermore,
it is obvious that kernel parameter selection is crucial to get good
performance. Besides, the use of appropriate kernel parameter will
overcome the problems of under-fitting and over-fitting so the best
classification process is yielded.

3.2. Discussion

Although the previous works have shown good performance on
the EEG signal classification, there still remain some problems to
be solved. First, the number of available EEG patterns for the clas-
sifier training is not much more, which shows us that the general-
ization ability of a classifier dominates the accuracy of online EEG
classification. On the other hand, the classifiers used in the previ-
ous works, for instance, the ANNs did not minimize the generaliza-
tion error bound for unseen EEG patterns. In this work, SVM is
implemented to overcome this limitation. Second, the systems in
previous works sent all the extracted features into the classifiers
directly. But, due to a great deviation in EEG pattern distribution
there exist mixed distribution between classes in general. As a re-
sult, if a feature transformation mechanism that can minimize the
within-class scatter and maximize the between-class scatter is set
into the system, it can be anticipated that the size of between-class
overlap region can be significantly reduced and the classification
performance can be significantly improved. In order to achieve
this, the PCA, ICA, and LDA algorithms are used in proposed
structure.

Based on the results of the present study and experience in the
EEG signal classification problem, we would like to emphasize the
following:

1. The high classification accuracy of the SVM classifier gives
insights into the features used for defining the EEG signals.
The conclusion drawn in the applications demonstrated that
the DWT coefficients are the features, which well represent
the EEG signals, and by the usage of these features a good dis-
tinction between classes can be obtained.

2. Support vector machines (SVMs) are based on preprocessing the
data to represent patterns in a high dimension—typically much
higher than the original feature space. With an appropriate non-
linear mapping to a sufficiently high dimension, data from two
categories can always be separated by a hyperplane. As a result,
while the original features bring sufficient information for good
classification, mapping to a higher-dimensional feature space
make available better discriminatory evidence that are absent
in the original feature space. The problem of training an SVM is

to select the nonlinear functions that map the input to a
higher-dimensional space. Often this choice will be informed
by the designer’s knowledge of the problem domain. In the
absence of such information, we might choose to use polynomi-
als, Gaussians or other basis functions. The dimensionality of the
mapped space can be arbitrarily high (though in practice it may
be limited by computational resources). For training the SVMs
we chose Radial Basis Function (RBF) and tried to find an appro-
priate kernel parameters g, and 7. The optimal ¢, and y values
can only be ascertained after trying out different values. In addi-
tion, the choice of y parameter in the SVM is crucial in order to
have a suitably trained SVM. The SVM has to be trained for differ-
ent kernel parameters until to get the best result (Cortes & Vap-
nik, 1995; Ubeyli, 2008; Vapnik, 1995).

3. Subasi (2007) evaluated the diagnostic accuracy of the Mixture
of Expert (ME) model and ANN on the same EEG data sets (A
and E) (Andrzejak et al., 2001) and the total classification accu-
racy of the ME model was 94.5% and ANN was 93.2%. Thus, the
accuracy rates of the SVM with the ICA, PCA and LDA for this
application were found to be significantly higher than that of
the ANN and ME model presented in the previous study (Subasi,
2007).

4. Nigam and Graupe (2004) used the same EEG data sets (A and
E) by using different feature extraction with ANN and the total
classification accuracy of their model was 97.2%. The SVM used
for this application indicated higher performance than that of
the ANN model presented by Nigam and Graupe (2004) also.

5. The classification results and the values of statistical parame-
ters indicated that the SVM with the ICA, PCA and LDA had con-
siderable success in the EEG signals classification by comparing
with the ANN. The proposed combined PCA, ICA and LDA meth-
ods with SVM approach can be evaluated in classification of the
non-stationary biomedical signals.

6. The testing performance of the SVM-based diagnostic system is
found to be satisfactory and we think that this system can be
used in clinical studies after it is developed. This application
brings objectivity to the evaluation of EEG signals and its auto-
mated nature makes it easy to be used in clinical practice.
Besides the feasibility of a real-time implementation of the
expert diagnosis system, diagnosis may be made more accu-
rately by increasing the variety and the number of parameters.

4. Conclusion

Diagnosing epilepsy is a difficult task requiring observation of
the patient, an EEG, and gathering of additional clinical informa-
tion. SVMs that classifies subjects as having or not having an epi-
leptic seizure provides a valuable diagnostic decision support
tool for physicians treating potential epilepsy, since differing etiol-
ogies of seizures result in different treatments. Conventional clas-
sification methods of EEG signals using mutually exclusive time
and frequency domain representations does not give efficient re-
sults. In this work, EEG signals were decomposed into time-fre-
quency representations using DWT and statistical features were
calculated to represent their distribution. Using statistical features
extracted from the DWT sub-bands of EEG signals, three feature
extraction method; namely PCA, ICA, and LDA, were used with
SVM and cross-compared in terms of their accuracy relative to
the observed epileptic/normal patterns. The comparisons were
based on two scalar performance measures derived from the con-
fusion matrices; namely specificity and sensitivity. The result of
EEG signal classification using SVMs shows that nonlinear feature
extraction can improve the performance of classifier with respect
to reduce the number of support vector. According to this result,
the application of nonlinear feature extraction and SVMs can serve
as a promising alternative for intelligent diagnosis system in the
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future. Also it is demonstrated that dimension reduction by PCA,
ICA and LDA can improve the generalization performance of SVM.
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